Journal of Organometallic Chemistry, 192 (1980) 389–398 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ÜBER NEUE OLEFIN-DICARBONYL-ISONITRIL-EISEN(0)-KOMPLEXE

HELMUT BEHRENS *, MATTHIAS MOLL, WERNER POPP, HANS-JÜRGEN SEIBOLD, ERICH SEPP und PETER WÜRSTL

Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg, 8520 Erlangen (B.R.D.)

(Eingegangen, den 5. November 1979)

Summary

The reactions of $[R_3O]BF_4$ or R_3EC1 (R = Me, Et; E = Si, Ge, Sn, Pb) with various olefincyanodicarbonyl ferrates(0) [olenFe(CO)₂CN]⁻ (olen = C₄H₆, C₅H₈, C₆H₈, C₆H₁₀, C₇H₁₀, C₈H₈, C₈H₁₄), which can be easily synthesized from olenFe(CO)₃ and NaN(SiMe₃)₂, lead to the neutral isonitrile derivatives olenFe-(CO)₂CNR or olenFe(CO)₂CNER₃. The 31 new complexes are characterized by their analyses, IR and ¹H NMR spectra.

Zusammenfassung

Bei den Reaktionen von $[R_3O]BF_4$ bzw. R_3ECI (R = Me, Et; E = Si, Ge, Sn, Pb) mit verschiedenen Olefin-cyano-dicarbonyl-ferraten(0) [olenFe(CO)₂CN]⁻ (olen = C₄H₆, C₅H₈, C₆H₈, C₆H₁₀, C₈H₈, C₈H₁₄), die aus den entsprechenden olenFe(CO)₃-Komplexen und NaN(SiMe₃)₂ leicht dargestellt werden können, erhällt man die neutralen Isonitrilderivate olenFe(CO)₂CNR bzw. olenFe(CO)₂-CNER₃. Die 31 neuen Komplexe werden analytisch, IR- und ¹H-NMR-spektroskopisch charakterisiert.

Einleitung

In den letzten Jahren haben wir die Reaktionen zahlreicher Olefin-eisen-tricarbonyl-Komplexe mit Natrium-bis[trimethylsilyl]-amid beschrieben. Je nach Art des olefinischen Liganden können sich hierbei grundsätzlich zwei verschiedene Umsetzungen abspielen, nämlich:

1. die Überführung einer CO-Gruppe in das isoelektronische CN^- -Anion, die zuerst von Wannagat and Seyffert an den Beispielen des CO und der beiden einkernigen Metallcarbonyle Fe(CO)₅ und Ni(CO)₄ nachgewiesen werden konnte [1].

Bei diesen Reaktionen werden gemäss Gl. 1 Olefin-monocyano-dicarbonyl-

 $olenFe(CO)_3 + NaN(SiMe_3)_2 \xrightarrow{}_{C_6H_6} Na[olenFe(CO)_2CN] + O(SiMe_3)_2$, (1)

ferrate(0) gebildet, die durch Umsetzung von olenFe(CO)₃ mit KCN wegen der Abspaltung der entsprechenden Olefinliganden nicht erhalten werden können. Der Primärschritt bei diesen Reaktionen beruht auf einem nukleophilen Angriff des NaN(SiMe₃)₂ auf das positivierte C-Atom eines CO-Liganden.

2. Die deprotonierende Wirkung von NaN(SiMe₃)₂, die im Falle des C₇H₈Fe-(CO)₃ (C₇H₈ = Cycloheptatrien) zum Tricarbonyl-eisen-cycloheptatrienid-Anion $[\eta^3$ -C₇H₇Fe(CO)₃]⁻ führt [2] (Gl. 2).

$$C_7H_8Fe(CO)_3 + NaN(SiMe_3)_2 \xrightarrow[C_6H_6]{} Na[C_7H_7Fe(CO)_3] + HN(SiMe_3)_2$$
(2)

Durch eine Röntgenstrukturanalyse konnte gezeigt werden, dass die $Fe(CO)_3$ -Gruppe an den Allylanion-Teil des C_7H_7 -Ringsystems gebunden ist, während dessen Dienteil koordinativ nicht beansprucht wird [3,4].

Nach der unter 1. beschriebenen Methode konnten bisher die in Tab. 1 zusammengestellten Olefin-monocyano-dicarbonyl-ferrate(0) dargestellt werden.

Die $[olenFe(CO)_2CN]^-$ -Anionen (olen = Butadien, Cyclohexa-1,3-dien, und Cyclooctatetraen) lassen sich zu den betreffenden Isocyanwasserstoffderivaten olenFe(CO)_2CNH bzw. olenFe(CO)_2CND protonieren bzw. deuterieren und mit $[Et_3O]BF_4$ in die entsprechenden Ethylisonitrilkomplexe olenFe(CO)_2CNEt überführen [9]. Vor kurzem konnten wir über die Röntgenstrukturanalyse speziell der Cyclohexa-1,3-dien-Verbindung C₆H₈Fe(CO)_2CNEt berichten [10].

Ziel der vorliegenden Untersuchungen ist es, durch weitere Umsetzungen von Olefin-monocyano-dicarbonyl-ferraten(0) mit $[R_3O]BF_4$ (R = Me, Et) bzw. Me₃SiCl, Me₃GeCl, Me₃SnCl und Et₃PbCl neue Olefin-dicarbonyl-isonitrileisen(0)-Komplexe darzustellen, die bisher auf anderen Wegen nicht zugänglich gemacht werden konnten.

Präparative Ergebnisse

TABELLE 1

Die Darstellung dieser neuen Olefin-dicarbonyl-isonitril-eisen(0)-Verbindungen, deren Farben und Aggregatzustände bei Raumtemperatur aus Tab. 2 her-

Olefinligand	Komplex	Lit.	
Butadien	[CaHaFe(CO)2CN]	5	
Penta-1,3-dien	[C3H8Fe(CO)2CN]	6	
Isopren	[C ₅ H ₈ Fe(CO) ₂ CN]	7,8	
Cyclohexa-1,3-dien	[C ₆ H ₈ Fe(CO) ₂ CN]	5	
Hexa-1,3-dien	[C ₆ H ₁₀ Fe(CO) ₂ CN]	6	
2,3-Dimethylbutadien	$[C_6H_{10}Fe(CO)_2CN]$	6	
Cyclohepta-1,3-dien	[C7H10Fe(CO)2CN]	8	
Cyclooctatetraen	[C ₈ H ₈ Fe(CO) ₂ CN]	5	
2,5-Dimethylhexa-1,3-dien	$[C_8H_14Fe(CO)_2CN]^-$	8	

OF PEIN MONOCYANO DICADDONIVE FEDDATE	<u> </u>
ULEFIN-MUNUCIANU-DICARDONIL-FERRATE(υJ

TABELLE 2

Olefinligand	Komplex	Farbe	Aggregatzustand
Butadien	C ₄ H ₆ Fe(CO) ₂ CNMe	gelb	Öl
	C ₄ H ₆ Fe(CO) ₂ CNSiMe ₃	tieforange	kristallin
	C ₄ H ₆ Fe(CO) ₂ CNGeMe ₃	orange	kristallin
	C ₄ H ₆ Fe(CO) ₂ CNSnMe ₃	gelb	kristallin
Penta-1,3-dien	C ₅ H ₈ Fe(CO) ₂ CNMe	gelb	öı
	C ₅ H ₈ Fe(CO) ₂ CNSiMe ₃	tieforange	öı
	C ₅ H ₈ Fe(CO) ₂ CNGeMe ₃	orange	öl
	C ₅ H ₈ Fe(CO) ₂ CNSnMe ₃	gelb	öl
Isoprea	C ₅ H ₈ Fe(CO) ₂ CNEt	rotbraun	Öl
Cyclohexa-1,3-dien	C ₆ H ₈ Fe(CO) ₂ CNMe	gelb	kristallin
	C ₆ H ₈ Fe(CO) ₂ CNSiMe ₃	tieforange	kristallin
	C ₆ H ₈ Fe(CO) ₂ CNGeMe ₃	orange	kristallin
	C ₆ H ₈ Fe(CO) ₂ CNSnMe ₃	gelb	kristallin
	C ₆ H ₈ Fe(CO) ₂ CNPbEt ₃	gelb	kristallin
Hexa-1,3-dien	C ₆ H ₁₀ Fe(CO) ₂ CNMe	gelb	Ö1
	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	tieforange	Ö1
	C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	orange	Ö1
	C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	g e lb	Ö1
2,3-Dimethylbutadien	C ₆ H ₁₀ Fe(CO) ₂ CNMe	gelb	kristallin
	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	tieforange	Öl
	C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	orange	Öl
	C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	gelb	Öl
Cyclohepta-1,3-dien	$C_7H_{10}Fe(CO)_2CNMe$	gelb	kristallin
	$C_7H_{10}Fe(CO)_2CNSiMe_3$	tieforange	kristallin
	$C_7H_{10}Fe(CO)_2CNGeMe_3$	orange	kristallin
	$C_7H_{10}Fe(CO)_2CNSnMe_3$	gelb	kristallin
Cyclooctatetraen	C ₈ H ₈ Fe(CO) ₂ CNMe	rot	kristallin
2,5-Dimethylhexa-1,3-dien	$C_8H_{14}Fe(CO)_2CNMe$	gelb	ର୍ଗୀ
	$C_8H_{14}Fe(CO)_2CNSiMc_3$	tieforange	ତୀ
	$C_8H_{14}Fe(CO)_2CNGeMe_3$	orange	ତୀ
	$C_8H_{14}Fe(CO)_2CNSnMe_3$	gelb	ତୀ

FARBEN UND AGGREGATZUSTÄNDE VON olenFe(CO)₂CNR UND olenFe(CO)₂CNER₃ BEI RAUM-TEMPERATUR

vorgehen, erfolgt im Sinne der beiden Gleichungen:

$$Na[olenFe(CO)_{2}CN] + [R_{3}O]BF_{4} \xrightarrow{20^{\circ}C}_{CH_{3}CN} olenFe(CO)_{2}CNR + R_{2}O + NaBF_{4}$$

$$Na[olenFe(CO)_{2}CN] + R_{3}ECl \xrightarrow{20^{\circ}C}_{CH_{3}CN} olenFe(CO)_{2}CNER_{3} + NaCl$$

(olen = die in Tab. 1 aufgeführten Olefinliganden; E = Si, Ge, Sn, Pb; R = Me, Et).

Sämtliche Komplexe, die sich bei Luftzutritt augenblicklich zersetzen, sind in unpolaren Lösungsmitteln sehr gut löslich. Während sich die Alkylderivate im allgemeinen als recht stabil erweisen, sind die übrigen Komplexe deutlich unbeständiger. Sämtliche Verbindungen lassen sich durch ihre Massen-, IR- und NMR-Spektren identifizieren.

IR-Spektren

Die kurzwelligen IR-Spektren der in CH₂Cl₂ gelösten Komplexe olen Fe-

TABE	LLE	3
------	-----	---

Olefinligand	Komplex	ν(CN)	ν(CO)	
Butadien	C ₄ H ₆ Fe(CO) ₂ CNMe	2165st	1987sst	1930sst
	C4H6Fe(CO)2CNSiMe3	2070st	1979sst	1940sst
	C4H6Fe(CO)2CNGeMe3	2056st	1973sst	1932sst
	C ₄ H ₆ Fe(CO) ₂ CNSnMe ₃	2070st	1975sst	1928sst
Penta-1,3-dien	C ₅ H ₈ Fe(CO) ₂ CNMe	2162st	1983sst	1927sst
	C ₅ H ₈ Fe(CO) ₂ CNSiMe ₃	2060st	1970sst	1930sst
	C ₅ H ₈ Fe(CO) ₂ CNGeMe ₃	2065st	1969sst	1922sst
	C ₅ H ₈ Fe(CO) ₂ CNSnMe ₃	2059st	1967sst	1918sst
Isopren	C ₅ H ₈ Fe(CO) ₂ CNEt *	2156st	1990sst	1935sst
Cyclohexa-1,3-dien	C ₆ H ₈ Fe(CO) ₂ CNMe	2168st	1983sst	1927sst
	C ₆ H ₈ Fe(CO) ₂ CNSiMe ₃	2060st	1970sst	1930sst
	C ₆ H ₈ Fe(CO) ₂ CNGeMe ₃	2055st	1967sst	1929sst
	C ₆ H ₈ Fe(CO) ₂ CNSnMe ₃	2059st	1963sst	1915sst
	C ₆ H ₈ Fe(CO) ₂ CNPbEt ₃	2053st	1961sst	1908sst
Hexa-1,3-dien	C ₆ H ₁₀ Fe(CO) ₂ CNMe	2160st	1980sst	1925sst
	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	2060st	1971sst	1931sst
	C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	2059st	1967sst	1919sst
	C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	2058st	1963sst	1917sst
2,3-Dimethylbutadien	C ₆ H ₁₀ Fe(CO) ₂ CNMe	2156st	1980sst	1923sst
	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	2057st	1971\$st	1930sst
	C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	2055st	1963sst	1918sst
	$C_6H_{10}Fe(CO)_2CNSnMe_3$	2054st	1963sst	1914sst
Cyclohepta-1,3-dien	C ₇ H ₁₀ Fe(CO) ₂ CNMe	2154st	1973sst	1918sst
	C7H10Fe(CO)2CNSiMe3	2055st	1977sst	1927sst
	C7H10Fe(CO)2CNGeMe3	2050st	1967sst	1919sst
	$C_7H_{10}Fe(CO)_2CNSnMe_3$	2048st	1957sst	1911sst
Cyclooctatetraen	C ₈ H ₈ Fe(CO) ₂ CNMe	2172st	1997sst	1945sst
2,5-Dimethylhexa-1,3-dien	C ₈ H ₁₄ Fe(CO) ₂ CNMe	2158st	1978sst	1920sst
	C ₈ H ₁₄ Fe(CO) ₂ CNSiMe ₃	2058st	1970sst	1930sst
	C ₈ H ₁₄ Fe(CO) ₂ CNGeMe ₃	2061st	1965sst	1920sst
	C8H14Fe(CO)2CNSnMe3	2049st	1959sst	1912sst

 ν (CN)- UND ν (CO)-VALENZSCHWINGUNGEN IN DEN IR-SPEKTREN VON olenFe(CO)₂CNR (CH₂Cl₂, cm⁻¹)

* Film.

 $(CO)_2CNR$ (olen = C_4H_6 , C_5H_8 , C_6H_8 , C_6H_{10} , C_7H_{10} , C_8H_8 , C_8H_{14} ; R = Me, Et, EMe₃; E = Si, Ge, Sn; PbEt₃) zeigen jeweils drei charakteristische Absorptionen, zwischen 2172–2048, 1997–1957 und 1945–1908 cm⁻¹ (Tab. 3). Die kürzerwellige Bande kann jeweils der $\nu(CN)$ -Valenzschwingung, die beiden längerwelligen Banden den $\nu(CO)$ -Absorptionen zugeordnet werden. Damit lassen sich sämtliche Verbindungen eindeutig als Isonitril-dicarbonyl-Komplexe charakterisieren.

Während die Lagen der $\nu(CO)$ -Absorptionen nahezu unabhängig von der Art des Isonitrilliganden sind, zeigt sich für die $\nu(CN)$ -Bande in den Alkyl-isonitrilderivaten eine kurzwellige Verschiebung um ca. 100 cm⁻¹ gegenüber denjenigen in den Silyl-, Germyl- und Stannyl-isonitril-Komplexen. Dies zeigt deutlich, dass die CNSiMe₃-, CNGeMe₃- und CNSnMe₃-Liganden im wesentlichen das gleiche Donator—Acceptor-Vermögen bezüglich der Fe—C-Bindung besitzen wie Alkylisonitrile, dass jedoch die SiMe₃-, GeMe₃- und SnMe₃-Gruppen aufgrund der möglichen $d\pi - p\pi^*$ Wechselwirkungen mit dem Stickstoff zu einer Schwächung der CN-Bindung führen.

¹H-NMR-Spektren

Nachdem der Fe(CO)₂CNR-Teil (R = Me, Et, EMe₃; E = Si, Ge, Sn) der neuen Komplexe durch die IR-Spektren charakterisiert wurde, zeigen die ¹H-NMR-Spektren der genannten Verbindungen, dass bei der Alkylierung, Silylierung, Germylierung und Stannylierung der entsprechenden Olefin-cyano-dicarbonylferrat-Anionen die η^4 -gebundenen Olefinliganden strukturell unverändert geblieben sind. Man beobachtet nämlich für die Diensysteme dieser Isonitrilverbindungen sowohl die gleiche Anzahl von Signalgruppen als auch die gleiche Multiplettstruktur wie in den vergleichbaren Tricarbonylkomplexen oleFe(CO)₃ (Tab. 4). Darüberhinaus findet man in den Spektren der neuen Isonitrilderivate jeweils ein scharfes Singulett für die Methylprotonen der verschiedenen Isonitrilliganden.

Betrachtet man die chemischen Verschiebungen für die Protonen der einzelnen Olefinliganden in den Tricarbonylkomplexen olen $Fe(CO)_3$ und diejenigen in den entsprechenden Isonitrilverbindungen olen $Fe(CO)_2CNR$ so zeigt sich eine unterschiedliche Beeinflussung vergleichbarer Protonen. So erwartet man grundsätzlich beim Ersatz einer CO- durch eine CNR-Gruppe eine geringe Hochfeldverschiebung der einzelnen Protonensignale. Während die H-Atome, die nicht direkt am koordinativ gebundenen Dienteil des Olefinliganden sitzen, tatsächlich nur um maximal 0.3 ppm nach höherem Feld verschoven werden, beobachtet man für die Protonen an den koordinativ gebundenen C-Atomen teilweise Hochfeldverschiebungen bis zu 0.72 ppm. Dabei werden die Protonen in 1,4-Stellung des Diengerüstes stets mehr beeinflusst.

Wie aus den Röntgenstrukturanalysen von $C_4H_6Fe(CO)_3$ [11] und $C_6H_8Fe-(CO)_2CNEt$ [10] hervorgeht, ist das Eisenatom in beiden Fällen quadratischpyramidal von den jeweiligen Liganden umgeben. Solche fünffach koordinierten d^8 -Systeme besitzen nach MO-Berechnungen [12] Fragmentorbitale, deren grösste Elektronendichten hauptsächlich die basalen Liganden beeinflussen. Damit erscheint es plausibel, dass bei Ersatz einer CO- durch eine CNR-Gruppe die Protonen der Olefinsysteme in 1,4-Stellung durch eine verstärkte Wechselwirkung mit dem ψ_3 des Diensystems, hervorgerufen durch das höhere Donatorvermögen des Isonitrilliganden, wesentlich stärker abgeschirmt werden als die Protonen in 2,3-Position.

Nachdem die Röntgenstrukturanalyse am Cyclohexa-1,3-dien-Komplex $C_6H_8Fe(CO)_2CNEt$ [10] ergeben hat, dass der Isonitrilligand eine basale Position einnimmt, ist naturgemäss die Frage von Interesse, ob die übrigen Komplexe die gleiche Struktur besitzen. Aus den IR- und ¹H-NMR-Daten können diesbezügliche Rückschlüsse nur in unzureichendem Masse gezogen werden. Aus diesen Gründen wird an anderer Stelle über die ¹³C-NMR-Spektren dieser Komplexe berichtet, wobei gleichzeitig auch das dynamische Verhalten dieser Verbindungen in Lösung untersucht wird [13].

Die Massenspektren dieser Komplexe, über die eine weitere Arbeit ausführlich berichtet, zeigen, dass bei der Reaktion der $[olenFe(CO)_2CN]^-$ -Anionen mit $[R_3O]BF_4$ bzw. R_3ECl ausschliesslich die Isonitrilverbindungen gebildet werden und ein Angriff der electrophilen Reste R bzw. ER_3 am Eisen ausgeschlossen werden kann [14].

bungen in ppm rel.	TMS)						
Olefinligand	Komplex	Zuordnung und	l Chemische Ver	schiebung			
Ŧ-		H(3/4)	H(1/5)	H(2/6)	N-Me/EMe3		
H ₃ H ₂	C4H6Fe(CO)3 ^d C4H6Fe(CO)5CNMe ^b	6.37(M, 2H) 6.34(M, 2H)	1.80(D, 2H) 1.44(D 2H)	0.22(D, 2H) -0.10(D, 2H)	3 44(S 3H)		
H, H	C4H6Fe(CO)2CNSIMe3 ^c C4H6Fe(CO)2CNSIMe3 ^c	6.71(M, 2H) 5.10(M, 2H)	1.23(D, 2H) 1.23(D, 2H)	0.24(D, 2H) -0.35(D, 2H)	0.38(S, 9H) 0.38(S, 9H)		
- ²	C4H6Fe(CO)2CNSnMe3 ^c	6.74(M, 2H)	1.85(D, 2H)	0.27(D, 2H)	1.03(S, 9H)		
Ŧ-		H(3/4)	H(1)	Me	H(5)	H(2)	NMe/EMe3
² H ³ H ² H ³	C ₅ H ₈ Fe(CO) ₃ C ₅ H ₈ Fe(CO) ₂ CNMe	5.23(M, 2H) 4.94(M, 2H)	1.66(D, 1H) 1.26(D, 1H)	1.43(D, 3H) 1.26(D, 3H)	1.05(M, 1H) 0.61(M, 1H)	0.22(D, 1H) -0.20(D, 1H)	3,27(S, 3H)
H ₄ H ₅	C ₅ H ₈ Fe(CO) ₂ CNSIMe ₃ C ₅ H ₈ Fe(CO) ₂ CNGeMe ₃	5.01(M, 2H) 4.95(M, 2H)	1.76(D, 1H) 1.78(D, 1H)	1.26(D, 3H) 1.28(D, 3H)	0.69(M, 1H) 0.58(M, 1H)	-0.18(D, 1H) -0.20(D, 1H)	0.39(S, 9H) 0.58(S, 9H)
Ψ	C ₅ H _B Fe(CO) ₂ CNSnMe ₃	4.93(M, 2H)	1.75(D, 1H)	1.23(D, 3H)	0.50(M, 1H)	-0.26(D, 1H)	0,50(S, 9H)
Ŧ		H(3)	Me	H(1/5)	H(2)	H(4)	NEt
Marth 12	C ₅ H ₈ Fe(CO) ₃ C ₅ H ₈ Fe(CO) ₂ CNEt	4.98(M, 1H) 6.05(M, 1H)	2.15(S, 3H) 2.04(S, 3H)	1.60(M, 2H) 1.25(M, 2H)	0.42(S, 1H) 0.13(S, 1H)	0.05(D, 1H) 0.42(D, 1H)	3.50(Q, 2H)/1.25(T, 3H)
⁴ ⁴						•	
° ±-		H(2/3)	H(1/4)	H(5/6)	N-Me/EM03		
	C ₆ H ₈ Fe(CO) ₃ ^d C ₆ H ₈ Fe(CO) ₂ CNMe C ₆ H ₈ Fe(CO) ₂ CNSiMe ₃ ^c	6.26(M, 2H) 6.11(M, 2H) 6.30(M, 2H) 6.30(M, 2H)	3.20(M, 2H) 2.84(M, 2H) 2.96(M, 2H) 2.88(M, 2H)	1.65(M, 4H) 1.65(M, 4H) 1.65(M, 4H) 1.69(M, 4H)	3.28(S, 3H) 0.38(S, 9H) 0.73(S, 9H)		
- H	C ₆ H ₈ Fe(CO) ₂ CNSnMe ₃ ^c	6.27(M, 2H)	2.86(M, 2H)	1.59(M, 4H)	0.65(S, 9H)		3

¹ H-NMR-SPEKTREN VON olenFe(CO)₃ UND olenFe(CO)₂ CNR IN LÖSUNG CDCl₃ AUSSER (a) CCl₄, (b) ACETON-d₆, (c) BENZOL-d₆, (Chemische Verschie-TABELLE 4

394

								NMe/EMe3	3.20(S, 3H) 0.14(S, 9H) 0.44(S, 9H) 0.46(S, 9H)
							-	H(2)	0,11(D, 1H) -0.20(D, 1H) -0.20(D, 1H) -0.16(D, 1H) -0.14(D, 1H)
N-Me/EMe3	3.17(S, 3H) 0.16(S, 9H) 0.38(S, 9H) 0.40(S, 9H)			NMe/EMe3	3.11(S, 3H) 0.20(S, 9H) 0.68(S, 9H) 0.50(S, 9H)			H(4)	0.47(D, 1H) 0.10(D, 1H) 0.14(D, 1H) 0.44(D, 1H) 0.46(D, 1H)
H(1)	0.20(D, 1H) -0.32(D, 1H) -0.35(D, 1H) -0.41(D, 1H) -0.35(D, 1H)	NMe/EMc3	3.11(S, 3H) 0.11(S, 9H) 0.44(S, 9H) 0.50(S, 9H)	H(6)	1,26(M, 2H) 1,07(M, 2H) 1,20(M, 2H) 1,20(M, 2H) 1,20(M, 2H)			Me ^b .c	0.87(D, 6H) 0.92(D, 6H) 0.86(D, 6H) 0.88(D, 6H) 0.91(D, 6H)
	77) (H7 (H7 (H7 (H7	● H(2/3)	0.20(D, 2H) -0.52(D, 2H) -0.62(D, 2H) -0.43(D, 2H) -0.47(D, 2H)	H(5/7)	1.83(M, 4H) 1.62(M, 4H) 1.76(M, 4H) 1.74(M, 4H) 1.70(M, 4H)			H(1/5)	1.46(M, 2H) 1.27(M, 2H) 1.18(M, 2H) 1.27(M, 6H) 1.24(M, 2H)
H(2)/Et/H(5)	1.81-0.86(M, 1.72-0.41(M, 1.60-0.53(M, 1.66-0.52(M, 1.60-0.55(M,	H(1/4)	1.80(D, 2H) 1.11(D, 2H) 1.21(D, 2H) 1.21(D, 2H) 1.18(D, 2H) 1.16(D, 2H)	H(1/4)	2.94 (M, 2H) 2.46 (M, 2H) 2.66 (M, 2H) 2.67 (M, 2H) 2.61 (M, 2H)	NMe	3.23(S, 3H)	Me ^a	1.98(S, 3H) 1.98(S, 3H) 1.95(S, 3H) 1.99(S, 3H) 1.98(S, 3H) 1.98(S, 3H)
H(3/4)	5.12(M, 2H) 4.95(M, 2H) 4.95(M, 2H) 4.86(M, 2H) 4.88(M, 2H)	Me	2.73(S, 6H) 1.87(S, 6H) 1.95(S, 6H) 1.95(S, 6H) 1.98(S, 6H) 1.95(S, 6H)	H(2/3)	6.25(M, 2H) 4.96(M, 2H) 5.03(M, 2H) 5.02(M, 2H) 5.02(M, 2H)	H(1—8)	5.20(S) 5.09(S, 8H)	H(3)	5.06(D, 1H) 4.83(D, 1H) 4.83(D, 1H) 4.86(D, 1H) 4.87(D, 1H)
	C ₆ H 1 0 Fe(CO)3 C ₆ H 1 0 Fe(CO)2 CNMe C ₆ H 1 0 Fe(CO)2 CNSIMe3 C ₆ H 1 0 Fe(CO)2 CNSIMe3 C ₆ H 1 0 Fe(CO)2 CNSnMe3		C ₆ H ₁ OFe(CO) ₃ C ₆ H ₁ OFe(CO) ₂ CNMe C ₆ H ₁ OFe(CO) ₂ CNSIMe ₃ C ₆ H ₁ OFe(CO) ₂ CNGeMe ₃ C ₆ H ₁ OFe(CO) ₂ CNGeMe ₃		C7H10Fe(CO)3 C7H10Fe(CO)2CNMe C7H10Fe(CO)2CNSIMe3 C7H10Fe(CO)2CNSIMe3 C7H10Fe(CO)2CNGeMe3 C7H10Fe(CO)2CNSnMe3		C ₈ H ₈ Fe(CO) ₃ c C ₈ H ₈ Fe(CO) ₂ CNMe		C ₈ H ₁ 4Fe(CO) ₃ C ₈ H ₁ 4Fe(CO) ₂ CNMe C ₈ H ₁ 4Fe(CO) ₂ CNSiMe ₃ C ₈ H ₁ 4Fe(CO) ₂ CNSiMe ₃ C ₈ H ₁ 4Fe(CO) ₂ CNSnMe ₃ C ₈ H ₁ 4Fe(CO) ₂ CNSnMe ₃
H H 2	¹ H ² H ¹ J	- 1-	Me H 33	H, H,				£-	Me G H J H J H J H J H J H J H J H J H J H

395

ø
Ц
Э
a
Š

VERSUCHSBEDINGUNGEN FÜR DIE DARSTELLUNG DER ølenfe(CO)2CNR-KOMPLEXE. ANALYSEN UND AUSBEUTEN

			:					
Darstellung von olen Fe(CD)- CNR	Einwaagen (mg/)	mmol)	Analysen (g	ef. (ber.) (%))			Bernando Bernando Be	Ausboute
4	Na[olen- Fe(CO) ₂ CN]	[R ₃ O]BF ₄ / R ₃ ECl	o	н	B	Fe	Z	(æ)
Butadten CAH&Fe(CO)5 CNMe	300/1.4	V 1/906	16.60			or and the difference of the second se		
		2. T 0.07	46.41)	4.01 (4.38)		26.74	6.70	86
C4H6Fe(CO)2CNSIMe3	327/1.6	163/1.5	45.92	5,14	10.24	20.70	(0.77) 5.15	73
- Machine - Mochine - Machine -			(45.30)	(2,66)	(10.59)	(21.06)	(5.28)	1
cd in 6 r clocky civile imeg	327/1.5	230/1.5	38,38	4,68	23.78	17.98	4.35	81
C4 H6 Fe(CO), CNSnMea	327/1.6	289.1 5	(38.79) 33 66	(4.88)	(23.44) 22 52	(18.03)	(4.52)	1
			(33.76)	4.25)	(33.36)	10.67	3.94 13 46)	95
Penta-1, 3-dien							(01.10)	
C ₅ H ₈ Fe(CO) ₂ CNMe	311/1.4	200/1.4	48.52	5,01		25.02	6,18	11
- H. Rovoov - Onicint-			(48.91)	(5.02)		(26.27)	(6.34)	ļ
cs HBre(CU)2 CNSIMe3	344/1.5	163/1.6	47,14	5.92	10.37	20.11	4.72	68
	1		(47,33)	(6.14)	(10.06)	(20.00)	(6.02)	
-sugrescolo chames	344/1.5	230/1.5	40.91	6,35	22.35	17.01	4.40	78
			(40.82)	(6.30)	(22.43)	(17.25)	(4.33)	
Camilla NO 2000 la s Art So	G44/1,D	289/1.5	35.64	4.81	32.49	15.41	3.68	69
			(35.73)	(4.63)	(32,10)	(16.10)	(3.79)	
lsopren Cs.Ha.Fe(CO), CNEt	200/0.9	166/0.9	61 12	0 2 2				
b			(21.10)	0,00 (5,57)		24.62	0.4U /E 00/	64
Cyclohexa-1, J-dien						(F. 1	(00)	
C ₆ H ₈ Fe(CO) ₂ CNMe	600/2.5	360/2.5	51.51	4,89		23,98	5.64	94
	1		(61.63)	(4.76)		(23.96)	(6.01)	1
of the second crimes	361/1.5	163/1.5	50,05	5,44	9.98	19.61	4.54	70
		1 1 1 1 1	(49.60)	(5.88)	(0.65)	(19.20)	(4.81)	
-Qragreto-0/2 civicane3	361/1.5	230/1.5	42.57	5,07	21.97	16.51	4.20	76
	1 1 100	1	(42.93)	(11,3)	(21.62)	(16.64)	(4.17)	
Eawring MOZ/OONA J 8m00	Q'1/TOP	27AA7.0	38,00	4,49	31,30	14.91	3.57	83
	2 5 500	1	(37.75)	(4.49)	(31.09)	(14.63)	(3.67)	
ويشتيعهم ورمحاء بالاستبع	0'7/TOP	0,1/044	35,36	4.38	40.72	10,62	2.56	73
			(30.16)	(4.52)	(40.44)	(10.90)	(2.73)	

396

Hexa-1,3-dien C6H10Fe(CO)2CNMe	200/0.8	120/0.8	61,48	6,49		23.88	6.97	62
			(61.10)	(6.67)		(23.76)	(5.96)	
C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	364/1.5	163/1.5	49.09	6.57	9,89	18.78	5.14	73
	1		(49.16)	(6.53)	(9.58)	(19.05)	(4.78)	73
C6H10Fe(CO)2CNGeMe3	364/1.5	230/1.5	42,10	5.59 27 251	22.01	16.41	3.66	79
	1	1	(42,68)	(5.67) ž 22	(21.49)	(16.54)	(4.15)	
Cert 10 r o(c c) 2 c razima 3	0.1/4-00	0'T/AAZ	a1.09 (37.55)	0,00	30,09	14.01	3.65)	8.
0 2. Dimethalkutadian								
CkH10F0(CO)5CNM0	163/0.7	100/0.7	51.48	5.40		23.93	5.81	65
	-		(51.10)	(6.57)		(23.76)	(90.9)	3
C ₆ H ₁₀ Fe(CO)2CNSIMe ₃	364/1.5	163/1.5	49,39	6.67	9.77	19.28	4.92	89
			(49,16)	(6.63)	(9.58)	(19.05)	(4.78)	
C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	364/1.5	230/1.5	42.11	5.44	21.38	16.47	4.61	87
			(42.68)	(6.67)	(21.49)	(16.54)	(4.15)	
C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	364/1.5	209/1.5	37.27	5.21	30.63	14,43	3.61	94
			(37.55)	(4.99)	(30.92)	(14.55)	(3.65)	
Cyclohepta-1,3-dlen								
C ₇ H ₁₀ Fe(CO) ₂ CNMe	160/0.6	90/06	53.62	5.54		22.78	5.68	68
			(53.47)	(6.30)		(22.60)	(6.67)	
C ₇ H ₁₀ Fe(CO) ₂ CNSiMe ₃	382/1.6	163/1.5	61.19	6.57	9.65	17.89	4.78	82
			(91.16)	(6.28)	(9.20)	(18.30)	(4.59)	
C ₇ H ₁₀ Fe(CO) ₂ CNGeMe ₃	382/1.5	230/1.5	44.06	5.35	20.57	15.78	4.39	85
			(44.65)	(6.48)	(20.76)	(16.97)	(4.01)	
C ₇ H ₁₀ Fe(CO) ₂ CNSnMe ₃	382/1.5	299/1.5	39.74	4.97	29.67	14.03	3.46	91
			(39.45)	(4.84)	(29,99)	(11,11)	(3.64)	
Cyclooctatetraen Cotto PortCOLo CNMo	199/05	71 10 5	55 87	A 16		01 GU	00 H	02
			(56.06)	(4.31)		(21.72)	0.45) (5.45)	2
2,6-Dimethylhexa-1,3-dien							• •.	
C8H14Fe(CO)2CNMe	250/0.9	135/0.9	56,23	6.61		21.03	5.13	50
		-	(54.78)	(6.ö1)		(21,22)	(5.32)	
C ₈ H ₁₄ Fe(CO) ₂ CNSiMe ₃	406/1.5	163/1.5	52.64	6.62	8.69	17.64	4.43	69
			(52.34)	(1.22)	(8.74)	(17.38)	(4.36)	
C8H14Fe(CO)2CNGeMe3	406/1.5	230/1.5	45.28	5.09	19,59	15,58	4.48	78
			(45.97)	(6.34)	(19.85)	(15.27)	(3.83)	
C ₈ H ₁₄ Fe(CO) ₂ CNSnMe ₃	406/1.5	299/1.5	41.60	5.36	28.48	13,69	3.56	89
			(40.83)	(5.63)	(28.82)	(13.56)	(3.40)	

Experimenteller Teil

Zur Darstellung der Isonitril-Komplexe olen $Fe(CO)_2CNR$ (R = Me, Et; SiMe₃, GeMe₃, SnMe₃, PbEt₃) werden die betreffenden Cyanocarbonylmetallate Na[olenFe(CO)₂CN] (Tab. 1) in MeCN gelöst und bei Raumtemperatur unter Rühren (10-30 min) mit den stöchiometrischen Mengen an [R₃O]BF₄ (R = Me, Et) bzw. Me₃ECl (E = Si, Ge, Sn) oder Et₃PbCl umgesetzt. Nach beendeter Reaktion wird das Lösungsmittel abgezogen, der Rückstand mit C₆H₆ extrahiert und anschliessend auch dieses Solvenz im Vakuum entfernt. Die so erhaltenen Isonitril-Komplexe fallen als analysenreine Festkörper oder Öle an. Im übrigen lassen sich die Alkyl-isonitril-Derivate chromatographisch reinigen (Al₂O₃, Akt. I; Petrolätherfraktion: Spuren olenFe(CO)₃; Benzolfraktion: olen-Fe(CO)₂CNR). Einwaagen, Analysenergebnisse und Ausbeuten sind in Tab. 5 angegeben.

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie e.V., Fonds der Chemischen Industrie, danken wir für die Unterstützung dieser Untersuchungen.

Literatur

- 1 U. Wannagat und H. Seyffert, Angew. Chem., 77 (1965) 457.
- 2 M. Moll, H. Behrens, R. Kellner, H. Knöchel und P. Würstl, Z. Naturforsch. B. 31 (1976) 1019.
- 3 P. Hofmann, Z. Naturforsch. B, 33 (1978) 251.
- 4 E. Sepp, A. Pürzer, G. Thiele und H. Behrens, Z. Naturforsch. B, 33 (1978) 261.
- 5 H. Behrens und M. Moll, Z. Anorg. Allg. Chem., 416 (1975) 193.
- 6 H. Behrens, M. Moll, W. Popp und P. Würstl, Z. Naturforsch. B, 32 (1977) 1227.
- 7 E. Sepp, Dissertation Universität Erlangen-Nürnberg 1978.
- 8 M. Moll, H. Behrens und W. Popp, Z. Anorg. Allg. Chem., 458 (1979) 202.
- 9 H. Behrens, M. Moll und P. Würstl, Z. Naturforsch. B, 31 (1976) 1017.
- 10 H. Behrens, G. Thiele, A. Pürzer, P. Würstl und M. Moll, J. Organometal. Chem., 160 (1978) 255.
- 11 O.S. Mills und G. Robinson, Acta Cryst., 16 (1963) 758.
- 12 A.R. Rossi und R. Hoffmann, Inorg. Chem., 14 (1975) 365.
- 13 M. Moll, H.J. Seibold und W. Popp, J. Organometal. Chem., 191 (1980) 193.
- 14 P. Merbach, P. Würstl, H.-J. Seibold und W. Popp, J. Organometal. Chem., 191 (1980) 205.